Mercury is emitted from various anthropogenic processes in temperate and tropical regions and is transported to northern latitudes via air and ocean currents. Although there are few point sources of mercury in the Arctic, elevated mercury levels have been observed in Arctic predators such as marine mammals, seabirds, fish, and spiders. This is concerning due to mercury’s known neurotoxic and teratogenic effects. Mercury deposited in the Arctic can be converted into its bioavailable form, methylmercury (MeHg), by aquatic bacteria. It can then be transferred into nearby terrestrial habitats by aquatic emergent insects. A previous study indicated that Arctic wolf spiders (Pardosa glacialis) collected from the shoreline of ponds had elevated concentrations of MeHg. In temperate zones, adult aquatic insects typically disperse within 30 meters of freshwater sources, suggesting that upland predators may consume fewer aquatic emergent insects, thereby reducing their contamination from these sources. While Arctic wolf spiders are ubiquitous predators across the tundra, it is unclear whether spiders collected in upland habitats are similarly contaminated with MeHg. The purpose of this study was to investigate the movement of mercury from aquatic to terrestrial food webs on the Pituffik Peninsula of northwest Greenland. Specifically, we examined the effects of shoreline proximity on mercury concentrations in Arctic wolf spiders. We collected Arctic wolf spiders and their insect prey at varying distances (0m, 10m, and 35m) from six freshwater ponds. We found a positive relationship between mercury concentrations and body size in P. glacialis. Spiders captured 35 meters away from the shoreline had significantly lower mercury concentrations than those captured at 0m or 10m from the shoreline. These results suggest that the dispersal of Arctic emergent aquatic insects declines with increasing distance from the shoreline and that emergent insects are an important source of mercury for Arctic wolf spiders.